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Abstract—Traditionally, human movement has been captured
primarily by motion capture systems. These systems are costly,
require fixed cameras in a controlled environment, and suffer
from occlusion. Recently, the availability of low-cost wearable
inertial sensors containing accelerometers, gyroscopes, and mag-
netometers have provided an alternative means to overcome the
limitations of motion capture systems. Wearable inertial sensors
can be used anywhere, cannot be occluded, and are low cost.
Several groups have described algorithms for tracking human
joint angles. We previously described a novel approach based on
a kinematic arm model and the Unscented Kalman Filter (UKF).
Our proposed method used a minimal sensor configuration with
one sensor on each segment. This article reports significant
improvements in both the algorithm and the assessment. The
new model incorporates gyroscope and accelerometer random
drift models, imposes physical constraints on the range of motion
for each joint, and uses zero-velocity updates to mitigate the
effect of sensor drift. A high-precision industrial robot arm
precisely quantifies the performance of the tracker during slow,
normal, and fast movements over continuous 15 minute recording
durations. The agreement between the estimated angles from
our algorithm and the high-precision robot arm reference was
excellent. On average, the tracker attained an RMS angle error
of about 3◦ for all six angles. The UKF performed slightly better
than the more common Extended Kalman Filter (EKF).

Index Terms—Inertial Measurement Units, Inertial sensors,
Kinematics, Joint Angle Tracking, Shoulder, Elbow.

I. INTRODUCTION

THE need to characterize normal and pathological human
movement has consistently driven researchers to develop

new rigorous tracking systems. These systems need to be accu-
rate, unobtrusive, and suitable for continuous monitoring over
long periods while subjects perform normal daily activities.

Magnetic resonance imaging-based methods for measuring
the mechanics of human joints have been successfully applied
to evaluate biomechanics in different human joints [1], [2].
Bey et al. developed and validated a tracking technique for
measuring glenohumeral joint translations during shoulder
motion from x-ray images [3]. These systems require a ded-
icated laboratory, trained staff to operate the systems, and
are restricted to static or very slow and limited range of
motion. Tracking of bone pins has also been used, but this
is an invasive technique which limits the number of subjects
who might be willing to participate in these studies [4],
[5]. Motion capture systems have been successfully used to
quantify joint kinematics by tracking the position of reflective
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surface markers during dynamic activities [6]. However, these
systems are costly, restricted to controlled laboratory settings,
suffer from occlusion, and are susceptible to skin movement
artifact; all of which limit their usage [7].

To overcome many of the limitations associated with con-
ventional motion measurement techniques, inertial measure-
ment units (IMU) consisting of triaxial accelerometers were
used to estimate thigh, shank and knee pitch and yaw angles
[8], [9]. These studies were limited to measuring only 2 de-
grees of freedom (DOFs) movement during limited activities.

Most studies using IMU’s, combine accelerometers and gy-
roscopes in wearable sensor systems [10], [11]. Traditionally,
the orientation of a segment has been estimated by integrating
the angular velocities measured by gyroscopes and position is
obtained by double integration of the translational accelera-
tion measured by accelerometers. A significant problem with
integration, however, is that inaccuracies inherent in the mea-
surements quickly accumulate and rapidly degrade accuracy.
Roetenberg showed that integration of noisy gyroscope data
resulted in a drift between 10 − 25◦ after one minute [12].
Roetenberg et al. argued that errors due to magnetic field
disturbance may be compensated by adequate model-based
sensor fusion [13]. They developed a Kalman filter that oper-
ated on two inputs: the difference between inclination from the
accelerometer and gyroscope, and from the magnetometer and
gyroscope. The states of the model included the gyroscope bias
error, orientation error, and magnetic disturbance. The filter
was tested with ferromagnetic materials close to the sensor for
less than a minute. The results show that the orientation esti-
mates improved significantly when the magnetic interference
correction was used. However, the accuracy could decrease if
the magnetic disturbance was due to varying sources that are
present during longer periods of testing.

To reduce the effect of gyroscope drift on orientation
estimates, accelerometers and magnetic sensors have been
used to compensate the drift about the horizontal plane, and
the vertical axis respectively [14], [15]. Favre et al. integrated
angular velocity data and corrected angle estimates based on
known joint anatomical constraints and inclination data from
accelerometers during static periods [16]. Luinge et al. used
physical constraints in the elbow to measure the forearm ori-
entation relative to upper arm [17], [18]. They minimized the
error around the vertical axis by using the knowledge that the
elbow joint does not permit abduction/adduction movement.
Although they reported an improvement in estimating the
orientation, the average orientation error was 20◦. Cooper et
al. also used biomechanical constraints to estimate knee joint
flexion/extension with 2 IMU’s with triaxial accelerometers
and gyroscopes attached to the thigh and shank. The perfor-
mance of the algorithm was evaluated with data obtained from
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7 healthy subjects during walking and running over 5 minute
periods. The average measurement error ranged from 0.7◦ for
slow walking to 3.4◦ for running [19]. However, the algorithm
only used a simplified model of a single hinge knee joint.

In other studies, systems with accelerometers, gyroscopes
and magnetometers were used to measure the orientation of
different body segments [20]–[24]. Accelerometer and gy-
roscopes were used to estimate inclination and orientation.
Magnetometers were used to measure orientation around the
vertical axis, assuming uniform local magnetic field. Bach-
mann et al. investigated the effect of magnetic disturbance
on the accuracy of orientation tracking systems and observed
errors that ranged from 12◦ to 16◦ [25]. Yun et al. presented
a simplified algorithm for orientation estimation using only
accelerometers and magnetic field measurements [26]. The
gyroscope-free system was only suitable for tracking slow
movements. Cutti et al. used inertial and magnetic data to
measure arm kinematics in one subject performing tasks in-
volving shoulder and elbow single-joint-angle movements [27]
and obtained an average RMSE ≤ 3.6◦.

In summary, other groups have used accelerometers and
magnetometers to compensate for the orientation error that
occurs when integrating the angular rate from gyroscopes, but
all of these methods were only applicable under limited cir-
cumstances. Some groups restricted the application to simple
tasks and short tracking periods. In other studies, the estima-
tion was accurate for only brief periods when the acceleration
measurements were only due to gravity. Others reported large
orientation errors due to magnetic field disturbances.

In a previous study [28], we combined kinematic models
designed for control of robotic arms with state space methods
to estimate human joint angles using two wearable inertial
measurement units. Each IMU consisted of triaxial gyroscopes
and accelerometers. We used the unscented Kalman filter
(UKF) to estimate shoulder and elbow joint angles from eight
subjects performing prescribed and free arm articulation for
an average of 2 minutes. Compared to angles obtained from
an optical reference system, we achieved an RMS angle error
of less than 8◦. Although errors between optical and inertial
angle estimates are minimal, some of these errors might be
attributed to markers moving independently of each other,
especially during fast movements [29]. Tracking performance
is also limited by the noise and drift of MEMS inertial sensors.

In this study, we incorporate sensor random drift models,
prior knowledge of physical constraints and human natural
range of motion to obtain better joint angle estimates, and to
mitigate the effect of sensors drift on the estimated angles
during long periods of movement. We also employ zero-
velocity updates to mitigate the effect of gyroscope drift on
the estimated heading angles. We quantify the performance
of our UKF-based method by comparing the angle estimates
to those obtained directly from a 6-axis high-precision robot
during 15-minute recordings for slow, regular and fast-speed
arm movement. We evaluate the performance of the extended
Kalman filter (EKF) compared to that of the UKF in estimating
the joint angles, given the nonlinear relationship between the
joint angles and the sensor measurements.

II. THEORY

To describe angles and movements of an arm segment
relative to its neighboring segments, we use an established
method of biomechanical modeling based on a sequence of
links connected by joints. This method was proposed by
Denavit and Hartenberg in 1955, and has been used in the
analysis and control of robotic manipulators [30]. The method
is based on characterizing the relationship between links and
joints with a (4 × 4) homogeneous transformation matrix.
The matrix depends on four parameters associated with each
link. The first parameter is the link length ai which is the
distance from the rotation axis Zi to Zi+1 measured along their
common normal axis Xi. The link twist αi, is the angle from
Zi to Zi+1 measured about the Xi axis. The distance from
Xi−1 to Xi measured along the Zi axis is known as the link
offset di. The fourth parameter is the joint angle θi, which is
the angle from Xi−1 to Xi measured about the Zi axis. These
four parameters are known as the Denavit-Hartenberg (D-H)
parameters and will be specified for the 6 DOFs arm model
in the following section. To describe the kinematics of each
link relative to its adjacent link, it simplifies this description
to attach a frame to each link. The convention of attaching
frames to the arm was detailed in [31].

A. Arm joint angles

We present a model for an arm movement with six degrees
of freedom. Typically, the shoulder joint is modeled as a ball-
and-socket joint with three DOFs. However, for the purpose of
quantifying the performance of our algorithm, we model the
shoulder with only two DOFs to match those of the industrial
robot used in this study for comparison. Fig. 1 shows the arm
model with static base reference frame 0 at the center of the
shoulder joint. Frame 1 represents shoulder internal/external

Fig. 1. Kinematics diagram of the arm model with Frame 0 as the static
reference at the base. Frames 1 and 2 represent shoulder internal/external
rotation, and flexion/extension, respectively. Frame 3 represents elbow flex-
ion/extension. Frame 4 represents forearm pronation/supination. Wrist flex-
ion/extension, and wrist twist are represented by frames 5 and 6, respectively.

rotation, and frame 2 represents shoulder flexion/extension.
The elbow joint is a hinge joint that allows movement in
one plane, flexion/extension, represented by frame 3. The
fourth joint is a pivot joint that allows for the forearm
pronation/supination, and is represented by frame 4. Frames 5
and 6 represent wrist flexion/extension, and twist respectively.
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Table I shows the D-H parameters of the arm model, where lu
is the length of the upper arm, lf is the length of the forearm,
and θi is the ith angle of rotation.

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR THE 6 DOFS ARM MODEL.

Frame αi−1 ai−1 di θi
1 0 0 0 θ1
2 π/2 a1 0 θ2 + π/2
3 0 lu 0 θ3
4 π/2 0 0 θ4 + π/2
5 −π/2 0 lf θ5 − π/2
6 π/2 0 0 θ6

We used three inertial measurement units (IMUs) to track
the arm movement. Two IMUs, with triaxial gyroscopes and
accelerometers, were secured with Velcro straps to the robot
upper arm and forearm, and a third unit was secured inside a
box on the wrist; see Fig. 2.

Fig. 2. Two IMUs were secured with Velcro straps to the robot upper arm
and forearm, and a third unit was secured inside a box on the wrist.

B. Propagation of velocity and acceleration

To formulate the dynamic equations for arm sensor mea-
surement, including gyroscope and accelerometer data, we use
three of the Newton-Euler equations of motion. Each link of
the arm in motion has some angular velocity, angular and
linear acceleration (ω, ω̇, v̇). The velocity i+1ωi+1 of link i+1
is that of link i plus the new velocity component added by joint
i+1. Similarly, the angular and linear acceleration of each link
are related by the following recursive equations:
i+1ωi+1 =i+1

i R iωi + θ̇i+1
i+1Zi+1 (1)

i+1ω̇i+1 =i+1
i R iω̇i +

i+1
i R iωi × θ̇i+1

i+1Zi+1 + θ̈i+1
i+1Zi+1

(2)
i+1v̇i+1 =i+1

i R
[
iω̇i ×iPi+1 +

iωi × (iωi ×iPi+1) +
i v̇i

]
(3)

where i+1
i R is the rotation matrix between the ith and

(i+1)th link, × represents the cross product operation, iPi+1

is the position vector of frame i + 1, which is the upper
right 3 × 1 vector of the D-H matrix. The rotation matrices
R, can be obtained by taking the transpose of the upper
left 3×3 transformation matrix and the D-H parameters shown

in Table I. The single and double dot notation represents the
first and second derivatives with respect to time. We initialize
ω0 = ω̇0 = (0, 0, 0)T . Effect of gravity is included in the
model at no extra cost by setting v̇0 = (gx, gy, gz)

T , where g
is gravity along each of the three axes. These forward recursive
equations are used to propagate angular velocity, and angular
and linear acceleration from the reference coordinate system
through the links of upper arm, forearm and wrist.

C. State Space Model

The general discrete time state-space model is of the form,

x(n+ 1) = fn [x(n), u(n)] (4)
y(n) = hn [x(n), v(n)] (5)

where x(n) is the unobserved state of the system, y(n) is
the observed or measured data, fn[·] and hn[·] are nonlinear
state and observation equations, u(n) and v(n) are the state
and observation white noise with zero mean. Our state model
equations which describe the evolution of the states with time
are given by

θi(n+ 1) = θi(n) + Tsθ̇i(n) +
1
2T

2
s θ̈i(n) (6)

θ̇i(n+ 1) = θ̇i(n) + Tsθ̈i(n) (7)

θ̈i(n+ 1) = αθ̈i(n) + uθ̈i(n) (8)

where i = {1, . . . , 6} of the six angles, θi(n) is the ith angle at
time n, θ̇i is the angular velocity, θ̈i is the angular acceleration,
uθ̈i(n) is a white noise process with zero mean, α is a process
model parameter, and Ts = 1/fs is the sampling period.
These are standard equations for a physical object traveling at
a constant acceleration. The model assumes the acceleration
is constant for the duration of a sampling interval. This is
sufficient for our data, which was acquired with a sample rate
of fs = 128Hz. The angular acceleration is modeled as a first-
order autoregressive process with zero mean. Depending on
the choice of the parameter α, this represents process models
ranging from a random walk model (α = 1) to a white noise
model (α = 0). For values of α < 1 the estimated angular
accelerations are biased towards 0. Typically, the value of α is
assigned an intermediate value that represents typical patterns
of constrained human joint rotation, which does not grow
unbounded. It is one of the filter parameters tuned to improve
the tracking performance. Its value and other parameter used
in the tracker are described in Table II.

The observation model describes the measurement obtained
by the triaxial gyroscope for the angular rate and the triaxial
accelerometer for the translational acceleration

y(n) =

[
ω(n)
v̇(n)

]
+

[
vg(n)
va(n)

]
where ω = {ωx, ωy, ωz}T is the angular velocity along the X ,
Y and Z axes. The gyroscope noise is described by the 3D
vector vg. Similarly, the translational accelerations and their
noise along the three axes are v̇ = {v̇x, v̇y , v̇z}T . It should
be noted that the acceleration measurement vector includes
translational accelerations and the effect gravity.
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D. Modeling Sensor Random Drift

To reduce the effect of random drift on shoulder rotation
angle estimates, we model the bias of the sensors placed on
the shoulder. Bias is modeled as a random walk, adding 6
more dimensions to the process model:

θi(n+ 1) = θi(n) + Tsθ̇i(n) +
1
2T

2
s θ̈i(n)

...
bω(n+ 1) = bω(n) + ubω(n)

ba(n+ 1) = ba(n) + uba(n)

The 3D gyroscope bias bω and 3D accelerometer bias ba are
random walk with zero-mean white noise ubω and uba. The
observation equation for the inertial measurement unit placed
on the upper arm is given below:

ωx(n) = θ̇1 cos(θ2) + bωx (9)

ωy(n) = −θ̇1 sin(θ2) + bωy (10)

ωz(n) = θ̇2 + bωz (11)

v̇x(n) = a1 sin(θ2)θ̇1
2
+ g cos(θ2)− θ̇1

2
a2 sin(θ2)

2

− θ̇2
2
a2 + bax (12)

v̇y(n) = a1 cos(θ2)θ̇1
2
− g sin(θ2)− θ̇1

2
a2 cos(θ2) sin(θ2)

+ θ̈2a2 + bay (13)

v̇z(n) = a1a2 cos(θ2)θ̇1θ̇2 + θ̈1a2 sin(θ2)

+ θ̇1θ̇2a2 cos(θ2)− a1θ̈1 + baz (14)

where θi is the ith angle at time n, θ̇i is the angular velocity,
and θ̈i is the angular acceleration. The distance between elbow
flexion joint and the device is a2. The time index n was
dropped from right-side of the equations for ease of readability.
Observation equations for the forearm and wrist sensors are
too large to be shown here.

E. Anatomical Constraints in The Shoulder And Elbow

The state model equations provide an elegant and con-
venient mean of incorporating prior knowledge of physical
constraints on state estimates to obtain accurate estimation.
Human shoulder rotation around the humerus bone cannot
exceed 90◦. Similarly, shoulder cannot attain more than 180◦

of abduction or flexion [32]. The natural range of elbow flexion
is between zero and 145◦. The range of forearm supination
is between zero and 85◦, and between zero and 80◦ for the
forearm pronation. The wrist flexion/extension natural range
is ±75◦. There are many ways to incorporate state constraints
into the nonlinear state estimators [33]. In this study, the
constraints information are incorporated in the UKF algorithm
during the time update, by restricting the sigma points within
the natural range of motion region. The constrained sigma
points are then used to in the measurement update, Kalman
gain calculation, and state updates. During the measurement
update, the constraints may be violated due to the linearization.
However, these violations are rare and small in magnitude.

F. Zero-Velocity Updates
To mitigate the effect of gyroscope drift on the estimated

heading angles during long periods of movement, we employ
the zero-velocity updates. Zero-velocity updates has been used
in ambulatory gait analysis and pedestrian navigation. During
walking cycles, human feet alternate between a moving stride
phase and a stationary stance phase when the foot is on
the ground. In their tracking algorithm, Feliz et al. detected
the stationary phase when the total angular rate was below
1rad/ sec [34] to reset the angular rate to zero. Resetting the in-
ertial data to zero is referred to as hard update. Foxlin detected
the stationary phase when gyroscope and accelerometer data
stayed below a prescribed threshold for at least 0.15 seconds.
He applied zero-velocity updates as pseudo-measurements in
an EKF navigation error corrector [35]. This is classified as
soft zero-velocity updates [36]

In this study, we only apply zero-velocity to update esti-
mates of the gyroscope bias around the vertical axis. Since our
algorithm uses gravity to estimate the attitude and we only lack
an absolute reference for heading about the vertical axis. When
the rotational rate around the vertical axis stays below 3◦/ sec
for at least 0.25 sec , movement is considered static. During
this static period, the measurement equation is augmented
with a pseudo-measurement of gyroscope vertical axis random
bias. Putting pseudo-measurements into the UKF filter, instead
of applying a hard update by resetting the velocity to zero,
provides additional benefits. Firstly, the filter provides an
estimate of the gyroscope bias, and corrects rotational rate
estimates. Thus, the filter corrects estimates of heading angle,
and consequently other distal arm angles.

G. Nonlinear state estimator
The model introduced above has a nonlinear relationship

between the angles and sensor measurements. The EKF is the
most common method of nonlinear state estimation. It is based
on linearizing the state and observation models with a first-
order Taylor series expansion. It models the state variables
with first and second order moments, which is most appropri-
ate when the distribution is Gaussian. The linearization leads to
poor performance if the dynamics are highly nonlinear and the
local linearization insufficiently characterizes the relationship.
The EKF also requires calculation of Jacobian matrices, which
can be difficult, tedious, error prone, and time consuming.

Sequential Monte Carlo methods, also known as particle
filters, can overcome the performance and implementation
limitations of the EKF [37]. These algorithms can be applied
to highly nonlinear and non-Gaussian estimation problems, but
they have computational requirements that are often orders of
magnitude larger than the EKF or UKF. The UKF has nearly
the same computational requirements as the EKF, but uses a
more accurate method to characterize the propagation of the
state distribution through the nonlinear models [38]. While the
methods described in this article could be implemented with
any of these nonlinear state space tracking algorithms, in our
tracker we used the UKF. We also implement the tracker with
the EKF to compare its performance versus UKF.
Q and R, are user-specified parameters to represent the pro-

cess and the measurement noise covariance. Since we assume
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white Gaussian noise, we set the off-diagonal entries of the two
matrices to zeros. The diagonal elements of R are determined
empirically and account for the uncertainty in the measurement
data. We approximate the measurement noise based on short
static periods at both ends of sensor measurements. Q is the
process noise covariance matrix, and its diagonal elements
are used as tuning parameters. These parameters control the
tradeoff between certainty in the process model representing
accurate motion dynamics, and how precisely the model tracks
the sensor measurements. Table II lists the different parameters
used to generate the tracking results.

TABLE II
USER-SPECIFIED PARAMETERS AND SAMPLE RATE FOR THE UKF- AND

EKF-BASED TRACKER. I REPRESENTS AN IDENTITY MATRIX.

Name Symbol Value
Variance of gyroscope measurement white Gaussian noise σvg

2 .0001
Variance of accelerometer measurement white Gaussian noise σva

2 .0064
Variance of process white Gaussian noise σu2 1.00
Initial state covariance matrix P I
Angular acceleration process parameter α 0.90

H. Performance assessment

To evaluate the performance of the inertial tracking system
in monitoring arm movement, we compared the joint angles
calculated by the inertial tracker with those obtained from
an industrial Epson C3 robot arm (Epson Robots, California)
with six degrees of freedom. The arm is a high speed, and
a very high precision industrial robot, that is normally used
for medical device and parts assembly. Three Opal sensors
(APDM, Portland, OR), each containing triaxial accelerome-
ters and gyroscopes were placed on the upper arm, forearm
and wrist as shown in Fig. 2. Table III shows the Epson C3
range of motion and operating speed of the six joints.

TABLE III
MAXIMUM OPERATING SPEED AND MOTION RANGE FOR THE ROBOT ARM.

Task Rate Max. Motion Range
Shoulder Internal/External Rotation 450◦/ sec ±180◦

Shoulder Flexion/Extension 450◦/ sec −160◦ , +65◦

Elbow Flexion/Extension 514◦/ sec −51◦ , +225◦

Forearm Supination/Pronation 553◦/ sec ±200◦

Wrist Flexion/Extension 553◦/ sec ±135◦

Wrist Twist 720◦/ sec ±360◦

Inertial sensor and robot data were synchronized by calcu-
lating the lag time using cross-correlation analysis.

r̂yx(`) ≈ E[y(n)x(n− `)] (15)

If max(r̂yx) is significant at lags |`| > 0, then ` gives
information about the delay between the signals. In this study,
inertial sensors were started before the robot arm. Hence, the
robot data was lagging. The lagging robot data was augmented
with ` zeros to synchronize it with the leading sensor data.

The majority of the tracking algorithms discussed in the
introduction limit their performance assessment to movement
performed with slow articulation. To verify the performance of
our inertial algorithm in tracking normal and fast movement,
we collected planar and complex arm movement at three
different rotational rates. The first data set was of the arm
movement at slow speed, which was defined as one fourth of

the arm maximum rotational rate. The second and third data
sets were of the arm movement at medium and fast speed,
which were defined as one half and full range of the maximum
arm rotational rate, respectively.

Another limitation of previous systems, is the brief time
duration of correct tracking or assessment. In this study, each
data set lasted at least15 minutes. Each recording started with
a stationary period of 3 seconds at the initial pose. This period
was used to estimate the gyroscope deterministic bias offset.
The mean of each gyroscope-axis stationary measurement was
removed from gyroscope data before calculating the joint
angles. The rest of the recording was designed to include
simple planar movement around each of the six joints. Each
planar movement, explained in Table III, was repeated four
times. This was followed by a second of stationary movement,
and ended with a complex joints movement that involved the
three joint simultaneously to mimic regular arm movement for
about two minutes. This arm trajectory was repeated a few
times to obtain 3 continuous 15-minute recordings of robot
arm movements at slow, medium and fast rotation rate.

III. RESULTS

We used two different trackers to compare the performance
of the EKF to that of the UKF in estimating the joint angles.
The assessment of the tracking performance is based on the
entire 15-minute duration of recording of arm movement.

A. Baseline Performance Results

In this section, we present baseline performance results of
the tracker before employing the modified model to account
for sensor drift, physical constraints and zero-velocity updates.
The baseline results will be used to assess the performance
improvement introduced by employing the drift reduction
techniques. We calculated the correlation coefficient r, and the
average root mean squared error (RMSE) between angle esti-
mates from the inertial tracker and true arm angles. Table IV
shows the baseline RMSE for the three data sets.

TABLE IV
BASELINE RMSE BETWEEN TRUE ROBOT ANGLES AND ESTIMATED

USING THE UKF OF THE THREE DATA SETS.

Task Slow (◦) Medium (◦) Fast (◦)
Shoulder Internal/External Rotation 25.0 8.1 9.6
Shoulder Flexion/Extension 1.1 2.4 2.5
Elbow Flexion/Extension 1.1 2.6 3.3
Forearm Supination/Pronation 1.4 2.1 2.4
Wrist Flexion/Extension 1.2 2.2 2.9
Wrist Twist 1.8 3.9 3.8
Rotational Rate ≤ 180 ◦/ s ≤ 360 ◦/ s ≤ 720 ◦/ s

B. UKF Performance with Modified Arm Model

We combined the three techniques discussed above into
one modified arm model to account for sensor drift, and to
employ physical constraints and zero-velocity updates. Fig. 3
show the last two minutes of the wrist true angles (dotted red
lines) and their estimates (solid blue lines) using the UKF-
based inertial tracking system during slow rotation rate up
to 180◦/ sec. Fig. 4 shows the last two minutes of shoulder
internal/external rotation, and flexion/extension angles and
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Fig. 3. True (dotted red line) and estimated (solid blue line) wrist angles
during the last 2 minutes of slow arm movement.
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Fig. 4. Baseline shoulder angle estimates compared to the true angles during
the last 2 minutes of slow arm movement.
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T ime (sec )Fig. 5. Shoulder angle estimates using the modified model compared to the
true angles during the last 2 minutes.

their baseline estimates during slow rotation. Fig. 5 shows the
same angles estimated using the modified model.

Table V shows that the new modified model dramati-
cally decreased shoulder internal/external rotation angle error
from 25.0◦ to 7.8◦; an error reduction of 69% compared
to baseline estimates around the vertical axis. The modi-
fied model also resulted in an increased average correlation

TABLE V
RMSE BETWEEN ANGLE ESTIMATES AND TRUE ROBOT ARM ANGLES

DURING SLOW, MEDIUM AND FAST SPEED MOVEMENT USING UKF.

Task Slow (◦) Medium (◦) Fast (◦)
Shoulder Internal/External Rotation 7.8 3.0 5.9
Shoulder Flexion/Extension 0.8 1.6 2.5
Elbow Flexion/Extension 0.9 2.0 2.8
Forearm Supination/Pronation 1.3 1.2 1.1
Wrist Flexion/Extension 1.1 1.5 1.8
Wrist Twist 1.7 2.8 2.2
Error reduction 69% 63% 39%

from 0.92 to 0.98 for slow movement. Consistent with the
results for slow arm movement, tracking errors between iner-
tial angle estimates and true robot joint angles were ≤ 3.0◦

during medium-speed movement, and ≤ 5.9◦ during fast-
speed movement. Error in shoulder internal/extension rotation
estimates was still higher than the joint angle error, although
it dropped from 8.1◦ to 3.0◦ during medium movement, and
from 9.6◦ to 5.9◦ during fast movement. Error in the other
five arm angles were consistently lower that estimation error
the shoulder rotation, with a maximum error of 2.8◦ in elbow
flexion/extension during fast arm movement.

C. EKF Performance

We implemented the inertial tracker with the EKF using the
modified arm model, and the same user-specified parameters
which were used with the UKF-based tracker. Fig. 6 shows
the last two minutes of the robot shoulder during medium
internal/external rotation around the vertical axis at a rotational
rate of 225◦/ sec. We obtained consistent agreement between
the true arm angles and their inertial estimates.
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Fig. 6. True shoulder angles and their estimates of the last 2 minutes at an
average rotation rate of 225 ◦/ s. Angles were estimated using the modified
arm model with the EKF-based tracker.

TABLE VI
RMSE BETWEEN ANGLE ESTIMATES AND TRUE ROBOT ARM ANGLES

DURING SLOW, NORMAL AND FAST SPEED MOVEMENT USING EKF.

Task Slow Regular Fast
Shoulder Internal/External Rotation 8.8 8.6 9.7
Shoulder Flexion/Extension 1.2 1.9 2.5
Elbow Flexion/Extension 1.3 2.1 3.1
Forearm Supination/Pronation 0.8 1.4 1.4
Wrist Flexion/Extension 1.2 1.9 2.9
Wrist Twist 1.8 3.7 3.4
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IV. DISCUSSION

In this study, we combined kinematic models with state
space methods to estimate human joint angles using wearable
inertial measurement units. The state model equations provide
elegant and efficient means of incorporating sensor bias model,
prior knowledge of physical constraints on state estimates,
and zero-velocity updates to obtain accurate estimation of
continuous long recordings. Besides the rotational rate data,
the state space model includes both the translational and
gravitational components of acceleration. This enables the
system to provide state estimates during both fast and slow
movements with consistent accuracy. States estimates included
joint angles, angular rotation and acceleration. This framework
could easily be extend to estimate joint segment lengths and
segment positions, to provide full human body kinematics
during spontaneous daily activities.

We used the unscented Kalman filter (UKF) to estimate
shoulder, elbow and wrist joint angles from an industrial robot
arm with 6 DOFs. Despite the different characteristics of
human movement from the movement of robots, we argue that
using a robot arm for assessment has many advantages over
the traditional optical systems. The different characteristics
are mainly due to the type of joints. According to [32], the
human arm mechanism is composed of 7 DOFs, with shoulder
joint as a ball-and-socket joint with 3 DOFs. However, the
robot shoulder has only 2 DOFs, which limits the comparison
to only 6 DOFs. Despite this limitation, using the robot
arm for assessment provides many advantages. Unlike motion
capture systems, which require estimation of joint angles from
marker positions and interpolation during marker occlusions,
the robot system provides direct angle measurements with
high precision. The arm movement rate can be controlled to a
desired rate ranging from slow to very fast, up to 720◦/ sec.
The robot provides a wide range of motion that can easily
mimic human movement in performing various tasks.

A stationary calibration period of 3 seconds at the initial
pose preceded each data set served multiple purposes. The
first was to align the inertial sensors and the robotic reference
system. The second was to calculate the variance of sensor
measurement noise. The stationary period was also used to
calculate the gyroscope constant bias. This bias was removed
from the gyroscope data before calculating the joint angles.

Compared to joint angles obtained from the robot reference
system, we achieved an average RMS angle error ≤ 3◦ during
slow arm movement at a rotational rate ≤ 180◦/ sec. As
expected, a maximum error of 7.8◦ was obtained for heading
angles around the vertical axis. Estimation error accumulates
around the vertical axis during slow or static periods. In
absence of changes in acceleration, gravity alone does not
provide any complementary data to that of the gyroscope.
Shoulder angle estimates around the vertical axis rely only on
gyroscope data, therefore error accumulates due to gyroscope
drift after 15 minutes. This, however, is a very reasonable
error range compared to what was reported by Roetenberg
who showed that integration of noisy gyroscope data resulted
in a drift between 10–25◦ after one minute [12].

In contrast to many studies discussed in the introduction, we

validated the performance of our tracking algorithm during
different speeds, over 15 minutes. Angle estimates during
arm movement at medium rotation rate ≤ 360◦/ sec are very
similar to those obtained during slow movement. On average,
the RMS angle error was 2.0◦, with a maximum error of 3.0◦

between true and estimated shoulder internal/external rotation.
The error slightly increased during fast movement with an
average RMS angle error of 2.7◦, and a maximum error
of 5.9◦ between true and estimated shoulder internal/external
rotation. Besides the effect of gyroscope drift on the accuracy
of the estimated angles, there was another source of noise that
contributed to the larger error. That was the effect of fast arm
movement on the table on which the arm is mounted. Due
to the very fast movement, the table was vibrating strongly,
especially during rotation around the vertical axis, adding more
noise to the sensor measurements. Despite the slightly higher
estimate error during fast movement, we maintained a very
reasonable error range compared to what was achieved by
other studies which reported error range of 12◦ − 16◦ [25].

The combined effect of imposing physical constraints,
modeling sensor bias, and employing zero-velocity updates
resulted in a considerable decrease in tracking error. The
RMSE dropped from 25.0◦ of the baseline heading angle
to 7.8◦ for estimates during slow rotation; an error reduction
of 69%. Similarly, the RMSE dropped from 8.1◦ with the
baseline heading angle to 3.0◦; an error reduction of 63% for
joint angles during medium-speed rotation. Estimation error of
fast shoulder rotation around the vertical axis was reduced also
from 9.6◦ to 5.9◦. The combined effect of using the modified
model in reducing the error due to sensor drift can be observed
especially during the last few minutes of the recording in
Fig. 4. With the prior knowledge that the arm rotation cannot
exceed a certain limit, the effect of gyroscope drift on angle
estimates was reduced to a very reasonable range of errors.
This eliminates the need to using magnetic sensors which leads
to large errors due to magnetic field disturbances [25].

Results for the EKF-based tracker shows that the UKF
performs slightly better. On average, the RMSE was 2.5◦, 3.3◦,
and 3.8◦ during slow, regular and fast arm movement respec-
tively. As in the UKF case, maximum error was obtained
for heading angles around the vertical axis. Shoulder inter-
nal/external rotation ranged from 8.6◦ to 9.7◦. The additional
complexity of the EKF in deriving a Jacobian matrix, besides
the UKF better performance, leads to the conclusion that the
UKF is a better choice for estimating Joint angles.

Natural resting positions of the human arm could be de-
tected, and used to correct long-term drift during the day. We
are currently collecting continuous data from human subjects
performing daily life activities. We plan to study the effect
of employing drift-correction to shoulder joint angles during
these resting positions.

V. CONCLUSION

The results presented here demonstrate that wearable inertial
sensors have the potential to achieve a level of accuracy that
facilitates the study of normal and pathological human move-
ment. We combined kinematic models designed for control of
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robotic arms with state space methods to directly and con-
tinuously estimate human joint angles using wearable inertial
sensors. These algorithms can be applied to any combination
of synchronized sensors and can be generalized to track any
limb movement. The state space framework enables one to
efficiently impose physical constraints on state estimates, and
to track in real-time or with improved accuracy offline. The
agreement with a high-precision robot arm reference system
was excellent. Unlike other motion systems, which require
fixed cameras in a controlled environment and suffer from
problems of occlusion, wearable inertial sensors can be used
anywhere, cannot be occluded, and are low cost. Our proposed
method used a minimal sensor configuration with one sensor
on each segment. In addition, our method is very accurate
during long periods of movements at various rotational rates.
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